Z. Kristallogr. 219 (2004) 847-856

847

© by Oldenbourg Wissenschaftsverlag, Miinchen

A better FOX: using flexible modelling and maximum likelihood
to improve direct-space ab initio structure determination

from powder diffraction

. . -k p4 .
Vincent Favre-Nicolin*' and Radovan Cerny"

' Université Joseph Fourier and CEA, DREMC/SP2M/NRS, 17, rue des Martyrs, F-38054 Grenoble Cedex 9, France
' aboratoire de Cristallographie, Université de Geneve, 24, quai Ernest-Ansermet, CH-1211 Genéve 4, Switzerland

Received June 1, 2004; accepted August 6, 2004

Powder diffraction / Ab initio structure anaylsis /
Maximum likelihood / Restraints

Abstract. Ab initio structure determination using direct-
space methods, although relying on an essentially brute-
force approach, can be greatly improved through smarter
algorithms. The most basic improvement involves the use
of prior information to reduce the number of configura-
tions evaluated to find the structure solution. It is however
vitally important that the parametrization used to incorpo-
rate this prior information does not reduce the efficiency
with which the configuration space is explored. We will
show that this can be achieved by defining molecules and
polyhedra through a set of restraints associated to dedi-
cated random changes, allowing to solve structures up to
three times as fast as with the ‘standard’ approach where
atomic positions are parametrized directly from bond
lengths, bond angles and dihedral angles.

To further enhance the efficiency of the algorithm, it is
also possible to ‘tune’ the convergence criterion used to
compare the structural model to the observed diffraction
data (usually x> or R,;). By using Maximum Likelihood
principles, it is shown that incorporating the fact that the
model is approximate in the y* evaluation can improve the
algorithm convergence towards the structure solution.

Introduction

Structure determination for small structures (<100 inde-
pendent atoms) can be seen as a simple task in 2004 Crys-
tallography. Indeed, direct methods (combined with den-
sity modification and Fourier recycling) have proven
strong enough to solve structures from single crystal data
for more than 1000 independent atoms, requiring rela-
tively little computer time.

However this is still not applicable to powder diffrac-
tion: indeed, direct methods rely on the precise measure-
ment of individual reflexion intensities, which is generally
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not possible for powders due to the projection of the 3D
reciprocal space on a single dimension. Worse, it often
happens that samples for which no single crystal of suffi-
cient size (>10 um) can be grown also diffract weakly at
medium and high resolutions, making the extraction of
structure factors with reasonable uncertainties difficult.
The development of micro-diffraction (beam size <10 wm)
with synchrotron radiation is also showing its limits as
compounds may suffer from radiation damage.

All these elements show that despite the considerable
algorithmic and technical developments of the last 20 years,
direct-space methods are and will still be required to solve
crystal structures. The relatively slow speed is compensated
by the robustness inherent to the ergodic search.

Global optimization in direct space

A basic direct-space algorithm can be described by very
few principles:

(1) Parametrization: the structure must be described
using continuous or discrete parameters

(2) Ergodic algorithm: the algorithm shall vary para-
meters to eventually explore the entire configuration
space, ensuring going through or near the true structure.

(3) Cost function: each configuration can be evaluated
by using one or several criteria (comparison be-
tween calculated and observed diffraction pattern
with %% or R.,, energetic evaluation, ...), yielding
the “cost” (or “fitness”, “penalty”, “score”,...) of
the configuration, and enabling to decide which
configurations are better.

The above principles describe a pure “‘brute-force* ap-
proach where all possible configurations are tested, until a
global minimum is found. While such an algorithm guar-
antees finding the structure solution, it will only be ade-
quate for the very patient crystallographer, since the num-
ber of trials required varies exponentially as a function of
the total number of parameters. Positive results were
nevertheless reported using grid-search techniques (Mas-
ciocchi et al. (1994); Chernyshev and Shenk (1998)) For a
faster convergence, a few principles should be added to
smarten up the algorithm:
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(4) Biased algorithm: the algorithm, while remaining
ergodic, can be biased so that more time is spent
near configurations with low costs, and rejects
higher costs.

This has long been used for Structure Determination
from Powder Diffraction (SDPD) with Monte-Carlo and
Simulated Annealing (SA) (Newsam, Deem Freeman,
(1992); Harris et al., (1994); Andreev, MacGlashan Bruce,
(1997); Andreev, Lightfoot and Bruce (1997)), where the
probability of a given configuration is proportional to 7,
following a Boltzmann-type distribution with temperature
T. The temperature is gradually reduced during the optimi-
zation, to focus on the best configuration. When several
criteria (R,,, energy) are used, it was also proposed to
minimize the two cost functions independently (Brodski,
Peschar and Shenk (2003)), rather than use a sum.

In order to avoid being trapped in a local minimum,
multiple SA runs can be used, or parallel optimizations
using different temperatures in the Parallel Tempering
(PT) method (Falcioni and Deem (1999)). Fox (Favre-Ni-
colin and éernf/ (2002)) uses PT with an automatic adjust-
ment of the Monte-Cralo temperature.

Another major approach uses Genetic Algorithms (GA)
(Shankland, David and Csoka (1997); Kariuki et al.
(1997); Harris, Johnston and Kariuki (1998)). In this meth-
od there is not a single configuration but rather of popula-
tion of configuration tested together, and the biasing
comes from (i) the selective survival of the best fitting
trial configuration, and (ii) the generation of new trial con-
figurations using both random changes and mating be-
tween existing configurations.

(5) Reducing parameter space: To accelerate the
structure solution the structure description must use
the smallest number of parameters by grouping
atoms, using a priori chemical information.

This can be done using rigid bodies (Dinnebier
(1999)), as well as by defining groups of atoms where
atomic positions are deduced from previous atoms using
bond lengths, bond angles and dihedral angles (Andreev,
Lightfoot and Bruce (1997)), generally using a Z-matrix
approach (Fig. 1).

Principles (1)-(5) were already used for numerous
SDPD programs: PowderSolve (Engel et al., (1999)),
Espoir (Le Bail, (2001))!, Topas (Bruker AXS, (2000)),
Endeavour (Putz, Schon and Jansen, (1999)), Dash (ex-
Druid) (David, Shankland and Shankland, (1998)), GAP
(Shankland, David and Csoka, (1997)), GAPSS (Kariuki et
al., (1997)), PSSP (Pagola et al. (2000)).

In the first version of FOX (Favre-Nicolin and éemy
(2002)), several new features were introduced:

— the use of a Dynamical Occupancy Correction,
which allows to automatically take into account
atoms overlapping with a symmetrical atom (special
position) or from a different buiding units, without
any a priori information about the overlap or spe-
cial position. This feature is especially important for

' Espoir is free, open-source software which can be downloaded
from http://sdpd.univ-lemans.fr/sdpd/espoir/

inorganic and intermetallic compounds, where the
structure is generally built from stacked polyhedra,
and often presents a high symmetry.

— a modular design, so that all “objects” involved
(crystal structures, diffraction datasets) could each
supply their criterion to evaluate the model. The de-
scription of the crystal structures uses a basic de-
scription of groups of atoms (Scatterers) so that the
parametrization could be modified independently of
the scattering calculations. The global optimization
algorithm was also built as a general algorithm, and
not specific to crystal structure determination.

Details about general features of the FOX program can
be found in the first article (Favre-Nicolin and éemy
(2002)); tutorials for inorganic and organic compounds are
available in the FOX package, as well as on the website
(http://objcryst.sourceforge.net/Fox/). In this article we will
focus on improvements to the structure determination al-
gorithms using two added principles:

(6) Flexible parametrization: the structure shall be
described in a way that reduces parameter space
exploration, without restricting the possible move-
ments between configurations. A corollary is that
the convergence shall not be sensitive to the details
of the parametrization.

(7) Maximum likelihood: the correct evaluation of
each configuration cannot rely solely on the calcu-
lation of R,,, or x* to compare a model to the ex-
perimental diffraction data, but should use Maxi-
mum Likelihood principles for a correct evaluation
of the approximate models.

Improving the modelling of organic molecules
for direct-space solution

The Z-matrix description

To describe a group of atoms (a molecule or polyhedron), the
simplest approach is to use a Z-matrix: all atoms are entered
into an ordered list, and their position is defined using one
bond length, one bond angle and one dihedral angle rela-
tively to previous atoms in the list (see Fig. 1). The absolute
position and orientation of the entire group can be defined by
three translation parameters and three Euler angles?.

This description is the most natural and direct descrip-
tion of any group of atoms, and is very efficient to reduce
the number of Degrees of Freedom (DOF) for the struc-
ture solution: as bond lengths and angles are generally
well known or predictible (within a few 0.01 A for bond
lengths and degrees for angles), the only remaining DOF
are the dihedral angles for free torsion bonds, plus the six
translation-orientation parameters, all aforementionned
parameters being linearly independant.

However this description presents a few pitfalls:

(a) Some structures cannot be adequately described
using a Z-matrix, when there is at least one cycle.

2 Note that while we focus on the Z-matrix approach, the limita-
tions outlined here apply to any parametrization of atomic positions
directly from geometrical descriptors.
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Fig. 1. In a Z-matrix description, atomic positions are deduced in
order from the position of the atoms preceding them, using bond
lengths (d;;), bond angles () and torsion (dihedral) angles (/). As
bond length and angles are generally predictable, this means that con-
formations are essentially described by a unique set of dihedral (tor-
sion) angles {7;}. The drawback of this modelling is that any confor-
mation change must be parametrized as a combination of torsion
angle changes, which makes more complex the exploration of all pos-
sible configurations.

Indeed an atom can only be defined from one end
of the cycle, so that the only option not to break
the cycle is to make it rigid. This prevents the de-
scription of flexible cycles.

(b) The description of the conformation directly from
dihedral angles implies that a given molecule can
be described by a number of different Z-matrices,
which are not equivalent (different order of atoms,
different choice for torsion angles).

(c) Complex conformation changes (mirroring the
structure, twisting an internal chain while keeping
the rest of the structure) are impossible or complex
to describe directly in terms of dihedral angles,
even though they can be ‘natural’ modifications
that an intelligent algorithm could try to find the
global minimum.

An extreme consequence of (b) is that since any
change in the beginning of the Z-matrix will modify the
position of all subsequent atoms in the structure, it is
therefore required to find first the position of the atoms at
the beginning of the structure. This is in practice not en-
tirely true, as the stochastic nature of the random config-
uration changes (small modifications simultaneously on all
DOF) makes it possible to change the structure at the
“beginning” (in the Z-matrix description) of the molecule,
while keeping the “end” unchanged. But this will only
happen stochastically, and cannot be driven by an intelli-
gent algorithm. This was pointed out by Favre-Nicolin and
Cerny (2002).

It was practically demonstrated (Shankland et al
(2002)) that using different orders for the atoms in a Z-
matrix description led to different convergence speeds,
which is due to (b) and (c), as the type of conformation
changes which are easily possible will depend on the Z-
matrix chosen. It is possible to work around these effects
by a carefully chosen Z-matrix, e.g. by describing flexible
structures from the center rather than from one end, but
this is not trivial and therefore not very practical for the
person who only occasionaly solves structures.

(c) should a priori not hinder excessively the conver-
gence of the algorithm: the use of random displacements,
jointly on all torsion angles, guarantees that all possible
conformations will be explored. However in practice it can
impose more complex changes in parameter space to go
from one configuration to another closely related. Worse,
there is no guarantee that the y? will remain at reasonable
values along the pathway to the new configuration. The
Z-matrix approach, with its very constrained method, re-
sults in artificial barriers on the Hypersurface
%% = f(parameters) which hinders its exploration. It is
then necessary to improve the flexibility of the modelling,
which was already pointed out by Andreev, MacGlashan
and Bruce (1997).

A pure restraints-based approach

In order to keep the advantages of the Z-matrix approach
(reducing the parameter space) while keeping a complete
freedom to the conformation changes that can be directly
used, it is possible to use a restraints-based system: all
atomic positions are defined directly by their three posi-
tional parameters (x,y,z), and the conformation of the mo-
lecule is statistically imposed through a set of restraints on
bond lengths, bond angles and dihedral angles.

These so-called ‘“‘soft restraints” have been used for
protein structure determination (e.g. see Herzberg and
Sussman (1982); Chapman (1995)), as well as for small
molecules and inorganic structures, including powder dif-
fraction in the GSAS software package (Dinnebier (1999);
Larson and Von Dreele (2000); Von Dreele et al. (2000);
Von Dreele (2001)). We are extending this use to ab initio
structure determination in direct space. Generally the re-
straints only use an expected value, and a o which defines
how quickly the cost (or %?) rises when the value departs
from the ideal value. As during a global optimization the
expected values can have a wide range (e.g. inorganic
crystals when the valence of metal atoms is a priori un-
known), we also use an inner range +0 without any pen-
alty: e.g. for a bond d of expected length dj, we have:

if deldy—0;do+0],  xiwa=0,
d— (dy — 0)\?
if deO—éa X%ond:<¥) ’
d — (dy + 0)\?
if d>dy+0, x%onﬁ(%) :

The same is used for bond angles and dihedral angle re-
straints, and more could be added (imposing the planeity
of a group of atoms, etc.). Default values for o (resp. O)
are 0.01 A (0.02 A) for bond lengths, and 0.6° (1.2°) for
bond and dihedral angles.

In order to correctly restrain the conformation of the
group of atoms, it is necessary to keep the restraints very
selective. This cannot be done simply by adding the
to the y? from the diffraction data, for two rea-

2
Xrestraints
sons:

(i) the ergodic nature of global optimization algo-
rithms implies that we must explore the entire
space, including very improbable configurations.
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What we want to achieve is to explore the entire
space, with loose restraints with regards to the ab-
solute atomic positions, but tight conformational re-
straints.

(ii) the range of x> values for the diffraction data is
unpredictable, with several order of magnitude dif-
ferences possible, depending on the background
level and on the sample crystallinity. Scaling the
X?estraims with Xﬁiffraction data is therefore difficult.

To avoid these issues we are using a dual restraints
approach: the y2 .. is evaluated by the Molecule object
immediately after a new conformation has been generated:
it is theél accepted with a Boltzmann-type probability,

—X i . .
exp (% ; a new conformation is generated when

a trial is rejected. The restraint temperature 73 is dynami-
cally adjusted to accept 70% of new configurations. The
validation of new configuration is therefore made before
calculating the diffraction pattern associated with the new
structure, which also saves computing time.

Intelligent random moves

The random generation of new configurations for mole-
cules cannot simply be random displacements of indivi-
dual atoms: otherwise, the imposed 70% acceptance of
new configurations would lead to a high restraint tempera-
ture and unacceptable configurations, or would require the
use of too small atomic displacements to be useful. We
use a combination of random configuration changes:

— rotation around free torsion bonds: this is similar
to the random moves obtained by a Z-matrix ap-
proach, except that it is possible to rotate any bond,
and does not depend on the order of either the
atoms or restraints. Also, the rotation only changes
the side of the bond which has the smallest number
of atoms, so that if the rest of the molecule is in a
correct position, it will remain in place.

— rotating single chains: when one atom is connected
to at least three other atoms, it is also possible to
rotate a single chain of atoms around the chosen
torsion bond, instead of rotating all the chains on a
given side of the torsion bond.

— exchanging atom groups: it is also possible to ex-
change the positions of two chains connected to a
given atom. This is especially useful when similar
chains are connected to a given atom, to ‘flip’ from
a false to the global minimum. This also allows
changing the absolute configuration of an asym-
metric atom. This is only tried in 5% of trials.

— random atomic displacements all atoms are ran-
domly moved with a maximum translation of
0.02 A along each coordinate.

All these moves are automatically generated at the be-
ginning of a global optimization, and checked with respect

3 This temperature is independent from the Simulated Annealing/
Parallel Tempering temperatures used for the global evaluation of the
new configuration using other criteria (diffraction data, anti-bump, . . .).

to the set of restraints to make sure that they are all al-
lowed (e.g. a dihedral angle restraint around a bond will
effectively exclude the bond from all free rotations around
it). The user also has an option to label explicitly the free
rotation bonds, as well as the option to mark the entire
group of atoms as a rigid body.

In addition to these internal changes, the molecule is
randomly translated and rotated, the rotation being defined
by a quaternion’ which allows (i) to avoid the ‘gimbal
lock’ when Euler angles fall into special positions, and (ii)
more generally allows to sample the orientation space in
an isotropic manner.

It is important to note that the given list of random
moves for the conformation of a Molecule is not exhaus-
tive: the {individual atoms + restraints} approach allows
any configuration change (in practice a combination of
random changes, linearly independent or not) to be trivi-
ally implemented at no computing cost, so that new
moves can be tuned for different types of atom groups:

— for long chains of atoms it could be possible to use
a helicoidal or sinusoidal change on all or part of
the chain

— for large flexible cycles it would be possible to
“twist“ part of the cycle while keeping the rest
fixed

— etc. .

Finally, most of these configuration changes (except the
flipping of atom groups) are continuous and reversible so
that it is possible to compute the derivative of the atomic
positions (and therefore of the diffraction data) with re-
spect to all the individual moves. This can be useful for a
steepest-descent algorithm, molecular-dynamics and the re-
cently proposed Hybrid Monte-Carlo algorithm (Johnston,
David, Markvardsen and Shankland (2002)).

In the case of Genetic Algorithms, it is necessary to
associate an absolute set of the torsion angle values to
each configuration, in order to be able to combine these
torsions to mate and produce new configurations. In a re-
straints approach, only torsion angles variations are re-
corded but not their absolute value: it would still be possi-
ble to cumulate the torsion changes from a reference
structure to obtain the same effect.

Results of the new modeling

We have compared the Z-matrix and restraints-based ap-
proach on the structure determination of Cimetidine from
powder diffraction: this structure is well-known as a test-
case for SDPD (Cernik et al. (1991)), and the presence of
8 free torsion angles makes it an interesting case of a
‘flexible’ molecule which should benefit from the new ap-
proach.

Figure 2 shows the convergence with both models, for
20 independent runs. The calculation speed is approxi-
mately the same for both models (4700 trials/s on a

4 http://en.wikipedia.org/wiki/Quaternion.
Quaternions were first used for global optimization of crystal struc-
tures from powder diffraction by David, Shankland and Shankland
(1998).
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Fig. 2. Convergence of the global optimization y? = f(trial) for 20
independent runs, using (a) a Z-matrix description and (b) a re-
straints-based description. The latter allows to use more intelligent
random configuration changes while still restraining the exploration
of parameter space to chemically sound trial structures, and yields a
faster convergence.

2.16 GHz Athlon XP running Linux (kernel 2.6.3)). The
average number of trials required to solve the structure’ is
4.8 million (17 mn) with a Z-matrix approach and
1.6 million (5 mn 40 s) for the restraints-based description,
i.e. three times as fast. Tests on other molecular structures
follow the same trend, with a convergence speed two to
three times faster. Inorganic structures, being mostly built
of quasi-rigid-bodies, benefit less from the new modelling.

Using maximum likelihood to improve
the exploration of the HyperSurface

In order to determine whether a structural model is cor-
rect, it is necessary to evaluate the Likelihood of that mod-
el given the diffraction data, and maximize that likelihood
as a function of the model parameters. In practice, it is
—log (Likelihood) which is maximized. Disregarding nor-

> The algorithm is stopped after falling below a predefined y2,
and all structures are checked versus the known correct configuration.

malization terms, this means maximizing:

(yqalc _ y(')bs)2
1 1

2
(o)

—log (Likelihood) = x* = 3

This analysis, where the only sources of error are the
experimental uncertainties o?bs, implies that we are able
to provide a perfect structural model and formulas de-
scribing the diffraction experiment: the fit should even-
tually be perfect if the diffraction data is. This approach
is correct for a least-squares refinement, as the objective
is indeed to obtain a near-perfect description of the struc-
ture. All intermediate structures evaluated are sufficiently
near that ‘perfect’ model to converge using the y> criter-
ion. For a global optimization, the problem is quite dif-
ferent, as we start ‘far’ from the solution, and we still
need to obtain a criterion which tells whether the model
is getting better or not. Obviously when far from the so-
lution, the sources of error when comparing the model to
the diffraction data is not only coming from the experi-
mental errors, but also from the approximate description
of the structure.

Several approaches can be used to help the algorithm
move towards the global minimum: begin the optimization
with more weight for the low-resolution part of the diffrac-
tion data, and progressively evolve to weights obtained
from counting statistics. This intuitive approach can be
difficult to use as it requires tuning the weight versus the
convergence of the algorithm, which will depend largely
on the type and quality of the data, and on the complexity
of the structure. It is also possible to restrict the space
explored by using low-resolution electron density envel-
opes (Brenner, McCusker and Baerlocher (1997); Brenner,
McCusker and Baerlocher (2002)) in which the atoms can
evolve, but this will only work for structures where clear
envelopes can be generated (e.g. organic structures sur-
rounded by disordered solvant, . . .).

A rigorous approach is provided by Maximum Likeli-
hood (ML) (see Sivia (1996) for an introduction), which
has been used in macromolecular crystallography for some
time (see Read (1990); Pannu and Read (1996); Murshu-
dov, Vagin and Dodson (1997); Read (2001)). ML allows
to implement in the algorithm the fact that we are working
with an approximate structural model: the atomic posi-
tions are approximations of the true structure, associated
with a positional error oy, and therefore leading to a dis-
tribution of calculated patterns rather than a single one.

This ML approach was proposed for powder diffraction
refinements (Antoniadus, Berruyer and Filhol (1990)), and
has already been used for SDPD by Markvardsen et al.
(2003) to take into account completely “missing” frag-
ments in a structure, allowing to find a partial structure.
We will now show that this can be used in a more general
way to improve the convergence of a global optimization
algorithm?.

 There also exist numerour uses of Maximum Likelihood in
Crystallography, mostly for phasing and direct methods, which is be-
yond the scope of this article. For an application to phasing from
powder diffraction data, see Bricogne (1991).
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Structure factor for an approximate structural model

To describe an approximate structural model, we follow
Luzzati’s (1952) approach and associate every atom at po-

—
sition ¥ with a translationnal error or. The most likely
value for the structure factor (which we will assume is
only real, for the sake of simplicity) can then be written
as:

<Fcalc> — <Zf] CcoS (2.7'[E . (i-’jo + 6HI}))>
J
<Fcalc> _ Zﬁ cos (ZnE . F]()) D;
J '

where f; is the atomic scattering factor of atom j, and K

o =
the scattering vector. D; = (cos (27K - 8r;)) is the Luzzati
factor associated with atom j.

Assuming a 3D isotropic gaussian for the positional

— —
error 61;, for a sufficiently small 61}, we can write:

Dy(R) = & (o0,

N
and with (|8r|*) = 307, where o7 is the mean-square dis-
placement of atom j, this can be written as:
DI(E) _ 6727120/?\12\2 _ 6787'[20]2“;#

This is exactly the same expression as for an atomic dis-
placement factor, and corresponds to the standard descrip-
tion of thermic disorder in the structure. The important
addition in the ML approach is that the calculated struc-
ture factor also has a variance, and Luzzati (1952) showed
that this variance can be written as’:

O??calc = ij‘Z(l 7D12)
J

The calculated structure factor is then represented by a
probability distribution:
. 1 —(F—(reile))?
P(F;F) = ——¢ 22
2702
If we assume that all atoms have the same error distribu-
tion owr, then we have:

0twe=(1=D*) S f* and (F)=DFe
J

which leads to:

1 _(P—prealey?

P(F; Fl°) = e

2702
We see that an approximate model therefore yields a
structure factor damped by the Luzzati factor D, which is
equivalent to an atomic displacement factor: the difference
between the two is that D represents a lack of information,
rather than a disorder. Henceforward it is associated with a

variance proportional to 1 — D?, i.e. increasing as a first
-2

approximation like Qualitatively, we can see that

R

7 This is only true in the absence of symmetry. It is more gener-
ally necessary to multiply 62 by the expected intensity factor &, which
is the number of times a given reflection is left unchanged by a sym-
metry element (e.g. see Stewart and Karle (1976)).

this will give increased variances (decreased weights) at
high angle.

Applying the ML principles to SDPD

The experimental data points are all independent measure-
ments associated with a gaussian distribution. To derive a
computationaly agreeable joint probability P(model|data),
it is necessary to derive a gaussian probability associated
with each calculated diffraction intensity. For SDPD, this
is straightforward when structure factors modulus have
been extracted from the powder pattern. However, not all
diffraction patterns are suitable for the extraction of struc-
ture factors. More importantly, it is precisely those average
or low-quality diffraction data that absolutely require glo-
bal optimization methods to find the structure. For those
reasons it was chosen in Fox to perform the optimization
directly on the full powder pattern, to be able to work
with low-quality, multiple phases, etc.5. ..

The gaussian approximation on the intensities is accepta-
ble since the initial gaussian distribution of atomic displace-
ments is chosen mostly out of mathematical convenience;
the approximation is nevertheless quite wrong for I < o([).

(1) = mx LP((F) + 2080.)
Ulzcalc - 2(m X LP)2 O’%““‘]C (2<Fcalc>2 + O.%:CMC) ’

where m is the multiplicity of the reflection, and LP the
Lorentz-polarization correction.

Finally, the probability distribution (again gaussian for
computational convenience) has to be derived for the full
profile: theoretically, this should be done by taking into
account the full correlation between the calculated values
along one profile, and calculating the joint probability ac-
cording to this correlation. However in Fox we are not
using full but rather integrated profiles (Favre-Nicolin and
éem}’/ (2002)), so that the quantities compared are the in-
tegrated intensities around the expected positions for all
reflections. An acceptable approximation consists in im-
posing that the integrated variance on a reflection profile
be equal to the variance on the integrated intensity. The
gaussian distribution on successive integration ranges can
then be considered reasonably independent.

The likelihood of the model given the diffraction data
can then be written as:

—log (Likelihood) = ¥gyeinood

1

obs calc 2
Y —s(Y);

! (
= 5 log (271 (0?b52 + s2o§alcz>> +

obs2 2 calc?
0" + s°07

where i varies over all the integration segments of the full
pattern, 09 and 0%"° are the observed and calculated un-

8 It is true that extracting the structure factors while keeping the
correlation matrix allows to keep the complete information from the
raw powder pattern. But this extraction can be difficult for average
and low quality data, or patterns with multiple cristalline phases, and
the equivalence between the raw powder pattern and the {extracted
structure factors; correlation matrix} is only valid if the profiles used
describe the diffraction pattern perfectly.
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Fig. 3. Modification of the HyperSurface y? = f(parameters) when introducing Maximum Likelihood model errors for a Cimetidine diffraction
data. The 2D cut represents the evolution of ¥* near the global minimum, when modifying the x coordinate of the molecule atom, and the
N; — Cg torsion angle. The 2D cut represents for [0; 2] along the torsion angle and [0; !/5] for the x translation. (a) without atomic positional
error. (b) oy = 0.1A (¢) om, = 0.2A (d) omr, = 0.5A. Taking into account a statistical positional error of all atoms allows to enlarge the global
minimum, effectively increasing the radius of convergence of the algorithm. However for large oy, the algorithm begins to have difficulties
discriminating configurations which differ only by misplacing one or two atoms, due to the large flat global minimum.

certainties, Y™ (resp. (Y),) are the integrated observed
intensity (resp. the most likely calculated integrated inten-
sity), and s is the scale factor between observed and cal-
culated patterns. The first term corresponds to the normal-
ization of the probability; it is usually forgotten but is
required here, lest the maximum likelihood be reached for
infinite opm.

Effect of maximum likelihood

We have first evaluated the influence of the introduction of a
ML positional error on the aspect of the HyperSurface,
using the cimetidine powder pattern (Cernik et al. (1991)).
We have plotted x> as a function of two parameters (the x
translation of the molecule and the torsion angle of the
N7 —Cg bond). The 2D maps are represented in Fig. 3 for
different values of the atomic position uncertainty oy.

The HyperSurface shows a clear widening of the global
minimum, which increases with oyg. This implies that the

9 Note that as the scale factor appears both in the numerator and
denominator, an iterative algorithm must be used to find the best
scale.

algorithm should find this minimum more easily. However
for larger oy values, the minimum becomes so large that
the algorithm would not be able to discriminate trial struc-
tures that correspond to similar electronic densities, due to
the ‘blurring’ introduced by the ML error.

We have also tested the effect of a ML error on the
convergence of the algorithm, using the Cimetidine struc-
ture (Cernik er al. (1991)). Due to the complex calcula-
tions, the speed (2.16 GHz Athlon XP running Linux
2.6.3) decreases from 4700 to 3800 trials/s. The conver-
gence behaviour is displayed in Fig. 4, and the average
number of trials required for the solution is listed in Table 1.
For each oy value, a different value for y3 jiooa Was
used to test to decide that the solution was found, since
the value at the global minimum changes’’. For larger

10 The global minimum should normally be found for oy, = 0. The
fact that it is actually found for oy, ~ 0.1 A indicates that the model is
incomplete, probably because we are only optimizing positional para-
meters, and that displacement parameters are only set to ‘expected’ va-
lues for that structure, or it could be due to the absence of the hydrogen
atoms in the structure. Practically, the oy value for which the mini-
mum is found is a indicator on how “complete” the model is.
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Fig. 4. Convergence of the Global Optimization of the Cimetidine
structure, shown on 20 independent runs, when using a Maximum
Likelihood error o = 0.15 A. The average convergence is faster (see
Fig. 2b.) due to the larger radius of the global minimum (Fig. 3), and
also reduces the number of long runs (those requiring more than
twice the average length for a successfull run).

oML, values, the discrimination between the true solution
and configurations where a single atom is misplaced be-
comes difficult: for oy =0, ¥iiineoa Vvalues below
200000 (= 3 X (Yieiihood)min) are in the final minimum,
whereas for oy = 0.3, Xﬁkehhood must be below 320000
(= 1.07 X (Xfietinood)min) O guarantee that it corresponds
to the global minimum.

Tests have also been conducted on a potassium tratrate
powder pattern recorded on a laboratory diffractometer,
and the conclusions differ, with the average number of
trials required increasing from 340000 (opp = 0.0 A) to
440000 (op, = 0.1 and 0.2 A). Improvement is however
obtained when the potassium atom is fixed. This different
behaviour can either be due to the presence of the heavy
atom (which may require a different error) or to the in-
house diffraction data, for which the higher o°P does not
permit the model errors to play the same role as for the
cimetidine data set.

Table 1. Average number of trials required to solve the Cimetidine
structure from its powder pattern, as a function of the ML error. The
numbers were calculated on 20 independent runs, all successful after
less than 5 million trials. The Third column indicates the minimum
%% value at the global minimum. Note that the large x> values are due
to the fact that (i) these are un-normalized Xz (i.e. not the Crystallo-
graphic Goodness of Fit), (ii) it includes the normalization term
which increases with the sigma values, and (iii) it includes the Mole-
cule restraints likelihood.

owm(A) (trials) (x10°) (X lzikelihood> min
0.00 1.6 70000
0.10 1.01 58000
0.15 0.90 94000
0.20 0.85 156000
0.30 0.85 300000

Future uses of ML for direct-space SDPD
algorithms

The results obtained on the Cimetidine sample confirm the
applicability of ML for real-space SDPD: besides the abil-
ity to take into account a non-localized fragment using an
infinite oy for a few atoms (Markvardsen et al. (2003)),
it allows to increase the radius of convergence of the algo-
rithm by enlarging the global minimum. This should be
especially useful for high-quality diffraction data where
the contribution of model errors will be largest compared
to the experimental (diffraction measurements) errors. Sev-
eral other uses can be suggested:

— use a progressive decrease of the ML position error
oy during the algorithm convergence. It could be
done both for SA and PT, although the comparison
of % tinood TEQUiTEs the use of the same oy, as it
alters the HyperSurface.

— the enlargement of the global minimum suggests
that introducing ML error could improve minimiza-
tion algorithms that use partial derivatives: steepest
descent, the recently proposed Hybrid Monte-Carlo
(Johnston et al. (2002)), as well as Least-Squares. It
could improve the efficiency of algorithms combin-
ing random structure generation and local minimiza-
tion (Turner et al. (2000)).

— the ML position error oy could be optimized as
any other parameter, since the ‘true’ minimization of
the model versus the diffraction data should incor-
porate this parameter describing the incompleteness
of the model.

— separate oy, parameters should be used for differ-
ent atoms, mostly to distinguish heavy and light
atoms.

Other FOX highlights

Recent structures

Here are a few complex structures which were recently
solved by FOX:

— the Mg, Ir;_, (x=0, 0.037 and 0.054) structure
was solved (éern}’/ et al. (2004)) with 25 indepen-
dent atoms (75 DOF), largely thanks to the Dynami-
cal Occupancy Correction (Favre-Nicolin and éemy
(2002)).

— the structure of -PSP (1,3-di-n-hexadecanoyl-2-n-
octadecanoylglycerol), Cs3H;p,O¢, was solved with
FOX by increasing gradually the degrees of freedom
[bond distances and angles around the glycerol moi-
ety followed by all (56) non-H torsion angles], re-
quiring two months of calculation time (De Ridder
et al. (2004)).

New features

Brian Toby recently added the ability to create FOX xml
files from EXPGUI (Toby (2001), http://
www.ncnr.nist.gov/programs/crystallography/software/
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expgui/expgui.html), therefore allowing to display crystal
structures refined by GSAS (Larson and Von Dreele
(2000)) using FOX. Brian Toby and Michael Polyakov
also contributed code to display electron (or neutron) den-
sity mesh in 3D.

The ability to export the 3D crystal view to POV-Ray
was also added (see examples at http://obj-
cryst.sourceforge.net/Fox/screenshot.html), allowing the
production of high quality drawings.

Conclusion

In this article we have presented how fundamental a ‘flex-
ible’ approach is to modern direct-space SDPD algo-
rithms:

— first in the modelisation of groups of atoms, where
the coupling of individual atoms, restraints and a set
of ‘smart’ random moves largely improves the con-
vergence, compared to simpler modelling which re-
strict the exploration of all possible structures.

— secondly by introducing explicitly the approximate
nature of the structural models evaluated during a
global optimization using a Maximum Likelihood
approach, it is possible to validate more efficiently
models while they are still far from the structure
solution.

FOX (Free Objects for Xtallography) is a free, open-
source project (http://www.gnu.org/philosophy/philoso-
phy.html). It can be downloaded and redistributed from
http://objcryst.sourceforge.net under the terms of the GNU
General Public License (http://http://www.gnu.org/licenses/
gpl.html). It is developed under Linux, precompiled bina-
ries are also available for windows (98 and above), with
preliminary support for Mac OS X.
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